Gaze Behaviour and Visual Attention : A Novel Method for an Eye Tracking Study and a Comparative Analysis Using Pilots with Varied Flight Experience

Cdr Aruna Ranganathan (Retd)

Supervisors : Dr Wayne L Martin, Dr Steven Thatcher & Dr Prasad Gudimetla

CRICOS Provider Code: 00219C | RTO Code: 40939

25 years in Naval Aviation (Commander)

• Commanded warships -ExO (Guided Missile Frigate)

Commanding Officer

Maritime Air Squadron (IL-38 SD) Anti-submarine and Electronic Warfare Maritime Patrol Aircraft with ASM.

14 years as Aviation Academic : Senior Lecturer (New Zealand, UAE and Australia)

Why this research?

Lack of adequate research (eye-tracking studies)

- Responses to unexpected in-flight events in the modern cockpit.
- Possible "sampling error" leading to contradictory results.
- Statistical power analysis

This research study explored:

- Conceptualisation and validation of a novel method for collation of copious amount of gaze data and extraction of precise data for analysis.
- Gaze data analysis
 - related to complexities of the in-flight situation in the cockpit
 - related to experience in flying
 - Identification of optimal scan strategy of expert pilots
- Credible results :
 - large sample size (153 pilots)
 - Multi-variate regression analysis
- Identify its applications for training purposes and towards promoting flight safety.

Research Question

How do pilots react to anticipated or unanticipated in-flight

non-normal events in the glass cockpit?

Research Method

- Quantitative method of objectively testing and collecting data of pilots' gaze responses in the glass cockpit
- Qualitative method of open-ended survey questionnaire.

Target Sample- 50 pilots in each group.

Achieved (Total Number) : 153 Pilots

Test Group 1 (TG1) - Student Pilots.

: Student pilots of CQU (MCC Qualified) : Completed SIM sessions for 49 Pilots

Test Group 2 (TG2) - Experienced Pilots.

: Commercial pilots who are type rated on any multi-engine aircraft. : Completed SIM sessions for 50 Pilots Test Group 3 (TG3) - Expert Pilots. Commercial pilots who are type rated on a twin-jet commercial aircraft (such as B737/A320 etc) : Completed SIM experimental sessions for 54 Pilots

Sampling rate	200 Hz
Accuracy	0.6°
Eye tracking technique	Dark pupil with 3D model
Eye tracking	Pupil measurement; Relative size in eye camera pixels + absolute size in mm through 3d eye model
Slippage compensation	Yes, 3D eye tracking model
Calibration procedure	9-point and 5-point
Weight	45 g

Experimental Setup

Scenario 1- Engine Failure: 20 kt before V₁ (CG) – As per Pre-Flight Brief (Anticipated event)

Cargo Fire : 20 kt before V₁ (EG)

EXPERIMENTAL FLOW CHART

Null Hypotheses

- Research Question. *How do pilots react to anticipated or unanticipated non-normal in-flight events in the glass cockpit?*
- The following null hypotheses (H_0) are presumed for this experimental study:
 - (i) H_{0.} The gaze scans (time spent in AOIs) remain the same for all groups of pilots (student/experienced/expert) under anticipated (CG) or unanticipated (EG) in-flight events.
 - (ii) H_{0.} The fixations (in AOIs) remain the same for all groups of pilots under anticipated (CG) or unanticipated (EG) in-flight events.
 - (iii) H_{0.} The pupil diameter variations as a response to increase in cognitive load remain the same for all groups of pilots under anticipated (CG) or unanticipated (EG) in-flight events.

Experimental Group – Cargo Fire

EXPORT OF DATA FROM PUPIL PRO TO BLICKSHIFT ANALYTICS SOFTWARE

NOVEL METHOD

SAMPLE CHARACTERISTICS OF ELIGIBLE PARTICIPANTS

Pilots	Sample	Age		Flight Experience(Hrs)		
<u>Test Group</u>	-	<u>(Min/Max)</u>	<u>(Mean/SD)</u>	<u>(Min/Max)</u>	(<u>Mean/SD</u>)	
Novice -TG 1 - Situation 1	42	19.5/48	27.5/7.6	75.5/300.5	247/97	
Novice -TG 1 - Situation 2	47	19.5/48	27.7/7.8	75.5/300.5	238/102	
Experienced -TG2- Situation 1	45	23/57.5	37.9/11.8	300/17500	4123/3006	
Experienced -TG2- Situation 2	48	23/57.5	39/12	300/17500	4043/2739	
Expert -TG3 - Situation 1	46	33/57.5	48.5/9.4	3000/32500	14577/7626	
Expert -TG3 - Situation 2	49	28/57.5	48.2/9.8	3000/32500	14368/7773	
All Pilots - Situation 1	133	19.5/57.5	38.3/12.9	75.5/32500	6514/7742	
All Pilots - Situation 2	144	19.5/57.5	38.3/13	75.5/32500	6279/7699	

VISUALISATION OF SAMPLE PARTICIPANT IN SCENARIO (EXPERIMENTAL GROUP).

RESULTS- Null Hypothesis Validation: Gaze Duration Analysis on AOIs Summary of Results: GDS: Multi-Variate Regressions with three IVs (Independent Variable) for evidencing Null Hypotheses (Scenario 1)

DV	Regression Weights with IV	Beta Coefficient	Adjusted R ²	F	t-value	p-value	H₀ supported	G* Power
1	"CG/FG" AS	-0.168	0.068	4.255	-0.828	0.409		99.9%
1	"Student/Expert" AS	0.710	0.068	4.255	2.853	0.005	Yes	99.9%
1	"Experienced/Expert" AS	0.768	0.068	4.255	3.143	0.002	Yes	99.9%
2		0.734	0.003	1.122	0.306	0.760	NO	98.0%
2	"Student/Expert" ΔAS	-4.218	0.003	1.122	-1.431	0.155	No	98.0%
2	"Experienced/Expert" ΔAS	-4.829	0.003	1.122	-1.669	0.098	No	98.0%
3	"CG/EC"	-12.137	0.174	10.351	-3.380	0.001	Yes	100%
3	"Student/Expert" EV	-18.232	0.174	10.351	-4.132	0.000	Yes	100%
3	"Experienced/Expert" EV	-13.565	0.174	10.351	-3.130	0.002	Yes	100%
4		-7.242	0.099	5.847	-1.939	0.055	NU	99.9%
4 <	"Student/Expert" ΔEV	-16.688	0.099	5.847	-3.636	0.000	Yes	99.9%
4	"Experienced/Expert" ΔEV	-6.316	0.099	5.847	-1.402	0.163	NO	99.9%

Note. *p < 0.05.

(DV-1) Dependent Variable: AS: "% time spent in prime Area of Interest (AOI) Airspeed (for a duration of 5 sec after event)

(DV-2) Dependent Variable: Δ AS: "Change in % time spent in prime Area of Interest (AOI) Airspeed (for a duration of 5 sec after the event - for a duration of 5 sec before the event)

(DV-3) Dependent Variable: EV: "% time spent in prime Area of Interest (AOI) External View (for a duration of 5 sec after the event)

(DV-4) Dependent Variable: \triangle EV: "Change in % time spent in prime Area of Interest (AOI) External View (for a duration of 5 sec after the event - for a duration of 5 sec before the event)

(IV-1) Independent Variable (Predictor): CG/EG : Control Group or Experimental Group

(IV-2) Independent Variable (Predictor): "Student/Expert" : Student Pilots compared with Expert Pilots.

(IV-3) Independent Variable (Predictor): "Experienced /Expert": Experienced Pilots compared with Expert Pilots.

RESULTS - SUMMARY

H₀. The gaze scans (time spent in AOIs) remain the same for all groups of pilots (student/experienced/expert) under anticipated (CG) or unanticipated (EG) in-flight events. The Null hypothesis is rejected.

The distribution of time spent in prime AOIs is not the same between CG and EG in both Situations (S1 & S2) within each group of pilots (Student/Experienced/Expert) and with all pilots (Student & Experienced & Expert) considered together.

H₀. The gaze scans (time spent in AOIs) remain the same amongst all groups of pilots (student/experienced/expert) under similar situations (in-flight events). The Null hypothesis is rejected.

The distribution of time spent in prime AOIs is not the same amongst all groups of pilots (student/experienced/expert) under similar situations.

H₀. The fixations (in AOIs) remain the same for all groups of pilots under anticipated (CG) or unanticipated (EG) in-flight events.

The Null hypothesis is rejected.

The distribution of Fixation Counts in prime AOIs is not the same between CG and EG in both Situations (S1 & S2) within each group of pilots (Student/Experienced/Expert) and with all pilots (Student & Experienced & Expert) considered together.

H₀. The fixations (in AOIs) remain the same amongst all groups of pilots (student/experienced/expert) under similar situations (in-flight events). The Null hypothesis is rejected.

The distribution of Fixation Counts in prime AOIs is not the same amongst all groups of pilots (student/experienced/expert) under similar situations.

- H₀. The pupil diameter variations as a response to increase in cognitive load remain the same for all groups of pilots under anticipated (CG) or unanticipated (EG) in-flight events. The Null hypothesis is rejected.
- The distribution of pupil diameter variations as a response to increase in cognitive load is not the same between CG and EG in both Situations (S1 & S2) within each group of pilots (Student/Experienced/Expert) and with all pilots (Student & Experienced & Expert) considered together.

H₀. The pupil diameter variations as a response to increase in cognitive load remain the same amongst the three test groups of pilots (when under similar situation). The Null hypothesis cannot be rejected. (p > 0.05)

The pupil diameter variations as a response to increase in cognitive load remains the same amongst all groups of pilots (student/experienced/expert) under similar situations (in-flight events).

Comparison and analysis Pupil diameter variations as a response to increase in cognitive load- in Situation 1 & 2

RESULTS - SUMMARY

- A Novel Method is available for
 - collation and extraction of precise gaze data.
 - Statistical analysis provided significant results.
 - Power analysis added credibility to the results.
- Can be used by any researcher in a simulator for
 - Simulation pf any non-normal event
 - Collection of gaze data during response
 - Comparison between pilots with varied flight experience, background, age etc
 - Identifying optimal gaze pattern for
 - Training doctrine improvisation.
 - Inputs to cockpit design for ergonomic and HCI interface related developments.
 - Use of experts' gaze strategy as templates for novice pilots.

QUESTIONS

